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Methods of specifying the boundary conditions for the tinite difference approximation 
of the 1 - D linearized shallow water wave equation are tested. First, extrapolation 
schemes for boundary values are studied. In particular, Wraracteristic extrapolations” 
based on the characteristic equations are proposed for the intlow boundaries. Second, 
discussions are given on the overall setting of the boundary conditions. An improper 
treatment of “computational” boundary conditions excites the computational modes 
in the numerical solutions. Two types of boundary treatments are found to avoid or 
suppress the unfavorable oscillation due to the computational modes. One type uses 
orderconsistent equation for extrapolations in a well-posed case, and the other uses a 
local smoothing of the solutions at the boundaries in an over-specified case. 

1. INTRODUCTION 

In solving the hydrodynamic equations inside a bounded region, when the flow 
at the boundaries is quite variable in time and space, the setting of boundary 
conditions presents an important and formidable problem. This problem is often 
further complicated by the requirement of additional boundary conditions in a 
numerical calculation using a finite difference method. These additional boundary 
conditions are called “computational” boundary conditions, in contrast to 
“physical” boundary conditions which are originally required. In [I], it has been 
shown that the order-inconsistency between the difference equations and the cor- 
responding differential equations leads to computational modes (or extraneous 
solutions) and also to the requirement of computational boundary conditions (or 
extraneous boundary conditions). 

In order to specify the computational boundary conditions, arbitrary extra- 
polation methods are usually used. Mathematically speaking, the values of the 
variables at the boundaries are to be determined as part of the solution. One 
possibility is to specify the computational boundary conditions by extrapolating 
the solution at the interior points to the boundary using the governing equations. 
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However, this approach has not been widely used except in a few cases (e.g., [3] 
and [8]). This is probably because improper extrapolations tend to cause numerical 
instabilities or unreasonable oscillations in the solution. If the proper number of 
computational boundary conditions (in addition to the physical boundary con- 
ditions) are specified, the numerical solution will be determinate. But computa- 
tional boundary conditions chosen in an ad hoc manner may excite the computa- 
tional modes excessively. In contrast, by determining the computational boundary 
conditions by means of an appropriate extrapolation method, i.e., one which is 
based on the governing equations and which does not admit any computational 
mode, one can avoid or suppress the computational modes at interior points, at 
least in the linear cases. It is one of the present objectives to discuss methods of 
suppressing the computational modes by proper boundary treatments. We hope 
that the discussion in this paper sheds light on the handling of the boundary 
setting of the “nested grid” models (e.g., [4], [6], etc.) 

2. GOVERNING EQUATIONS 

The one-dimensional linearized shallow water wave equation is chosen as a test 
case, i.e., 

lJ,* + cu,* + cPp,* = 0, (14 

@t* + m,* + @,ua* = 0, W) 

where t* and x* are the dimensional time and space, U is the velocity, @ is the 
geopotential, C is the constant mean velocity assumed positive, and Qi, is the 
constant mean geopotential. 

The equations are nondimensionalized as 

(24 

W3) 

where the new independent and dependent variables are: 

t = t*/(L/C), x = x*/L, 

u = u/c, f$ = qcz. 

Fr = G/Q0 , and Fr is the Froude number, L is the length of the limited 
domain in consideration. It is assumed that the Froude number is less than unity, 
because we are mainly interested in large scale atmospheric flows. 

In order to specify the boundary conditions and to choose an exact solution in 
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closed form, we construct the characteristic equations. Multiplying (2A) by a and 
adding the resultant equation to (2B), we have: 

KWt) + (1 + a>@/Wl(d + a4 = 0, (3A) 

and, subtracting the resultant equation from (2B), we have: 

[(Wt) + (1 - a)(WLx)l(+ - au) = 0 (3B) 

where a = Fr-l/‘. Equation (3A) is an equation for the right-running charac- 
teristic with speed of (1 + a), and Eq. (3B), for the left-running characteristic 
with speed of (I - a), as can be seen in Fig. 1. The trajectory with advection speed 

t 

t 

characteristic 

CHARACTERISTICS AND TRAJECTORY 

FIG. 1. Characteristics and trajectory. 

of 1 is also indicated. One can readily see that the solutions below satisfy Eqs. (3A) 
and (3B), 

4 + au = f(x - Bt), (4A) 

9 - au = g(x + ~0, (4B) 

where /? = a + 1, y = a - 1, and f and g are arbitrary functions. Since the Froude 
number is less than unity and hence a is greater than 1, one of these two charac- 
teristics goes downstream and the other goes upstream. Consequently, we need one 
boundary condition downstream and another upstream. 
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Let us next assume the following parameters and the following functional forms 
forf and g: 

Fr = l/9, so that a = 3 and /I = 4, y = 2, 

and 

f(4) = 2 sin(d), (54 

g(t) = -2 sin(2c&, (5B) 

where 01 = 277, wavenumber 1 for f, 2 for g, and 5 is a dummy variable. Hence we 
have the exact solutions as follows: 

(b = sin ol(x - pt) - sin 201(x + yt), 64) 

u = (l/a)[sin LX(X - /3t) + sin ~OL(X + rt)]. (W 

The initial conditions are given by setting t = 0, i.e., 

4 = sin(ax) - sin(2ax), (74 

u = (l/u)[sin(ax) + sin(2olx)l. (7B) 

The boundary conditions are taken to be: 

u=Oatx=Oandx= 1, 

according to (6B). These boundary conditions do not change in time due to the 
choice of j?, y, and 01(= 277). 

3. FINITE DIFFERENCE EQUATIONS 

Equations (2A) and (2B) are approximated by finite difference. In particular, the 
Euler-backward scheme [5] is used, which consists of two steps. 

Step 1. 

up;+1 = Ujn - (dt/2dX)(U~+:, - Uy-1) - (dt/2dX)(+7+l - +7--J, @A) 

+p;+1 = 49" - W/2~X)(~;",l - 4T-J - (dt/2dx)(l/Fr)(uR, - z&a, (8B) 

where up, #up are U, 4 at the first, or the predictor step, dx is the grid size, At is the 
time interval, superscript n denotes t = ndt, and subscript j denotes x = &lx, etc. 
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+j”+l = y$” - (Llt/2dx)(~p,=:’ - ~#pi”-:‘) - (Ot/2Ox)(l/Fr)(up, - upi”_:“). (9B) 

The domain extends from j = 1 to J(=39), and dx = l/38. The condition of 
computational stability is /3(d t/Ax) < 1. With /l = 4, it is clearly satisfied for 
dt = O.ldx. 

4. BOUNDARY CONDITIONS 

In connection with extrapolation of boundary values, we will use two termino- 
logies, i.e., “scheme” and “method.” A scheme refers to a specific procedure for 
obtaining the computational boundary values by extrapolating the solution of a 
difference equation. It may be applied to the simple advection, or more general 
wave equations. In the appendix, the “upwind scheme” and the “backward-time 
scheme” are presented as examples of practical extrapolation schemes. Both of 
them use upwind differences in space and can therefore be used at an outflow 
boundary for extrapolating the boundary values. When a scheme is applied to a 
given wave equation, the resulting difference equation is called a method of extra- 
polation. Thus, when the upwind scheme is applied to the advection equation (2A) 
or (2B), the resulting difference equation is called the “advection upwind method,” 
or simply, the “upwind method,” and when it is applied to the characteristic 
equation (3A) or (3B), the resulting difference equation is called the “characteristic- 
upwind method.” Similarly, when the backward-time scheme is used, we have the 
“advection backward-time method,” or simply the “backward-time method,” and 
the “characteristic backward-time method.” 

Let us next turn to Eqs. (2A) and (2B). The derivatives of u and 4 in these 
equations are first order in space, whereas the differences for u and $ in (8A) and 
(8B) are second 0rder.l In other words, the difference equations are one order 
higher in space than the original differential equations for both u and 4. Therefore, 
two computational boundary conditions are required. 

In order to discuss boundary settings, two situations need special attention: one 
is the case in which the boundary conditions are “well-posed,” and the other is the 
case in which they are “over-specified.” 

For the first case, i.e., a well-posed boundary value problem, we shall discuss 
only the computational boundary conditions because there is no special difficulty 
for the physical boundary conditions. The boundary on the right is an outflow 

1 A difference equation is m-th order difference when it spans over (m + 1) grid points. 
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boundary; thus either the upwind or the backward-time scheme can be applied to 
either of the advection equations (2A) or (2B) in order to obtain the computa- 
tional boundary values at this right boundary. On the other hand, the boundary on 
the left is an inflow boundary, so that neither scheme can be applied directly to 
these equations. Although the downwind scheme can be used at an inflow boundary, 
it is an amplifying scheme (see the appendix) and therefore will be avoided here. In 
order to find an alternate method for treating this boundary, let us consider the 
left-running characteristic, represented by Eq. (3B). The speed of the characteristic 
(1 - a) will be negative since the Froude number is less than unity as has been 
assumed. This implies that the left-running characteristic goes out at the left 
boundary, so that this boundary becomes effectively an “outflow boundary” as far 
as this characteristic is concerned, even though it is an inflow boundary for the 
advection equations. Therefore, either scheme in the appendix can be applied to 
the characteristic equation (3B) to obtain the computational boundary values at 
the inflow boundary on the left. Similarly, the right-running characteristic equation 
(3A) can be used at the right boundary in order to extrapolate the boundary values 
there. This is because the right boundary is an outflow boundary for this charac- 
teristic (as well as for the advection equations) since its speed (I + a) is positive 
for any value of CJ. We shall refer to such methods as “characteristic extrapolation 
methods,” and shall use the terminology “characteristic-upwind method’ or 
“characteristic backward-time method” to refer to the method using the upwind 
or the backward-time scheme as applied to Eqs. (3A) and (3B). Let us summarize 
the discussion in this first case. At the outflow boundary (on the right) there are 
two types of extrapolation methods: one type bases on the advection equations 
(2A) and (2B), the other bases on the right-running characteristic equation (3A). 
On the other hand, at the inflow boundary (on the left) only one type of extra- 
polation method is available, i.e., one that bases on the left-running characteristic 
equation (3B). 

The second case, i.e., the case of over-specification, is the following. Four 
boundary conditions are required for the system of difference equations @A) and 
(8B), whereas only two boundary conditions are needed for the system of differen- 
tial equations (2A) and (2B). If one specifies ZJ at both ends, the problem of the 
differential equation system is well-posed. Likewise, if one specifies # at both ends, 
the problem is also well-posed. In this sense, there are two sets of well-posed 
conditions. If, on the other hand, one specifies both sets of conditions above, the 
problem is over-specified. Although the problem of the differential equation system 
is over-specified, the numerical solutions to the difference equation system are 
determinate. The only thing is that they include the computational modes, which 
lead to the grid-to-grid oscillations. These oscillations may not be attributed to 
numerical instabilities as Shapiro and O’Brien [4] did. Smoothing through use of 
artifical diffusion is often applied in order to suppress these oscillations. But if the 
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coefficient of diffusion is large enough to be effective, the smoothing will distort the 
physical modes of the solutions as well. In order to avoid this trouble, a local 
smoothing could be applied at the boundary. It reduces practically to zero the 
amplitudes of the computational modes at the boundary, which are the primary 
sources for the computational modes inside the domain. Since the local smoothing 
is applied only at the boundaries, the physical modes are left intact. Also, because 
the computational modes are suppressed, there is no longer any constraint of the 
additional boundary conditions, Therefore, the local smoothing relaxes the con- 
straint of the over-specification, such that it seems as if some set of well-posed 
boundary conditions were specified. A question one should ask here is what 
“equivalent” set of well-posed boundary conditions do the resultant solutions 
correspond to? If this equivalent set of boundary conditions is incompatible with 
the original set of well-posed boundary conditions, then the numerical solution 
will not correspond to the solution for (either set of) well-posed boundary con- 
ditions. However, if the sets of boundary conditions are “approximately compa- 
tible,” the solution should be close to the solution of the well-posed problem. 

Six versions of boundary settings are tested (see also Fig. 2). 

j=, j-39 ;=I j-39 

(1) @ 

U U 
B, 

4 @ (4) @ 

$2 

4 
CHARACTCRISTIC “PWlND fk 
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B, 
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@ 
U 

(6) 
@ 

t 
4 

CHARACTERISTIC-BACKWARD-TIME ,* 
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SIX VERSIONS OF BOUNDARY SETTINGS 

FIG. 2. Six versions of boundary settings. 

(1) All four values, i.e., u, + at both ends (j = 1 and 39), are specified 
according to Eqs. (6A) and (6B). This is an over-specified case. 
(2) All four values are specified as in (1) and, in addition, local smoothing is 
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applied only at j = 2 and 38 for all time, For example the smoothing for 
u at j = 2 is processed as u2 (smoothed) = (l/2) u1 + (l/4)(24, + us). This is 
also an over-specified case. 
(3) u and 4 are specified at j = 1 and those at j = 39 are extrapolated by the 
upwind method. This is over-specification at the left boundary and under- 
specification at the right boundary. Therefore, this specification is not well- 
posed. 
(4) u is specified at both ends and 4 is extrapolated at both ends by the 
characteristic-upwind method. It is a well-posed case. 
(5) u is specified at both ends and + at j = 1 is extrapolated by the charac- 
teristic-upwind method and C$ at j = 39 by the upwind method. This specifica- 
cation is also well-posed. 
(6) u is specified at both ends and 4 is extrapolated at both ends by the 
characteristic-backward-time method. This specification is well-posed. 

Apart from these six calculations, another calculation was carried out using 
cyclic boundary conditions. This provides a special situation in which a numerical 
solution free of boundary treatments can be obtained. 

5. RESULTS 

In Fig. 3A and 3B are shown the solutions of the geopotential height and the 
velocity respectively at the 150-th time step for various boundary settings, in 
comparison with the exact solution and the solution for the cyclic boundary 
conditions case. 

Methods (4), (5), and (6) are all well-posed and they use order-consistent dif- 
ference equations for extrapolating the computational boundary values. They yield 
almost the same and equally good results, and, therefore, only the solution by 
Method (4) is displayed in the figure. The amplitude is slightly lower than that of 
the exact solution not due to the numerical boundary conditions, but due to the 
(interior) difference equations. 

Method (1) is over-specified, and in fact the computational modes were excited 
as is seen in the grid-to-grid oscillations of the solution. When smoothing is 
applied at points next to the boundary (Method (2)), the computational modes are 
suppressed, and, hence, the solution appears to be as good as those of Methods 
(4), (5), and (6). It should be noted that the boundary conditions specified in 
Methods (1) and (2) are exact solutions to the differential equations (2A) and (2B), 
to which the difference equations (8) and (9) are approximations, therefore these 
boundary conditions are approximately compatible to these difference equations. 
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FIG. 3A. Solutions 4 at the 150-th time step. 
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FIG. 3B. Solutions u at the 150-th time step. 
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Otherwise, the solution may be free of numerical oscillations, but it can be quite 
different from the solution of the well-posed problem such as Methods (4), (5), and 
(6). Also, it should be noted that this kind of smoothing be discriminated from 
smoothing applied everywhere, which would seriously distort the physical modes. 

Method (3) is not well-posed; the boundary on the right is free (i.e., under- 
specified). The resulting solution deviates sharply from the exact solution. The 
situation for the geopotential height is also shown in Fig. 4, which is the same as 

-9 k 

.lO 8 ’ h ’ 8 ’ 8 ’ 4 ’ c ’ ) ’ ’ ’ c ’ ’ ’ 5 ’ 3 ’ ’ t ’ 3 ’ k ’ a ’ a ’ L 
I 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 : 

THE DEVIATION OF THE SOLUTION USING B. C. 131 j 

FIG. 4. The deviation of the solution using B.C. (3). 

Fig. 3A but with a different scale to show the whole solution. The deviation appears 
in the range of influence of the boundary on the right, as would be expected. The 
range of influence extends toward the left with the speed y of the left-running 
characteristic. Computational instability could be another possible cause of the 
deviation. However, in Fig. 4, it can be seen that the solution on the right-hand 
side is smooth, indicating that this is not the case. 

6. CONCLUSIONS 

The increase in order in the difference equations over the differential equations 
creates computational modes, and at the same time requires computational 
boundary conditions. 
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The computational boundary conditions can be supplied by using extrapola- 
tions based on the governing equations, The upwind scheme and the backward- 
time scheme are satisfactory for obtaining the outflow computational boundary 
values by extrapolation. They cannot, however, be used to obtain the inflow 
boundary values. For this purpose, the left-running characteristic equation, instead 
of an advection equation, can be used. 

If the computational boundary conditions are properly specified, the computa- 
tional modes in the numerical solution can be suppressed, at least in the linear 
cases. In fact, using order-consistent difference equations to obtain the computa- 
tional boundary values we were able to avoid large amplitudes of the computa- 
tional modes. Therefore, the solution will depend only on the physical boundary 
conditions, which are required to be properly posed. In other words, a set of well- 
posed boundary conditions, coupled with proper computational boundary con- 
ditions, yields a good numerical solution. 

Over-specifications excite computational modes. However, smoothing at points 
just next to the boundaries suppresses these modes. Also, the resulting solution is 
reasonable if the boundary conditions are approximately compatible to the dif- 
ference equation. This method serves as an alternative to the extrapolation of 
computational boundary values in a well-posed problem, and what is more impor- 
tant, it may be the only method available when the derivation of the well-posed 
boundary conditions is too difficult to analyze. On the other hand, under-specifica- 
tions lead to a solution which deviates sharply from both the exact solution and 
the numerical solution with cyclic boundary conditions. 

In short, two methods are particularly recommended. One is to specify a set of 
well-posed boundary conditions and to use order-consistent difference equations 
based on the governing equations for the computational boundary conditions. The 
other is to specify all numerical boundary conditions which are approximately 
compatible, and then to apply local smoothing at grid points next to the boundaries. 
They may find their application to the nested grid problem in which all the 
boundary values for the finer resolution domain are available from the solution 
of the coarser resolution domain. 

For extension to the two-dimensional case, all the conclusions above are valid 
except for the characteristic extrapolations. Instead of characteristic lines in the 
one-dimensional case, we have characteristic cones, called the Monge cones, in 
the two-dimensional case,for which one-sided difference equation can not be written 
for the purpose of obtaining the boundary values by extrapolation. However, this 
problem can be overcome by using the projection of the Monge cone [7]. For 
extension to the nonlinear case, it should be noted that the computational modes 
can also be excited in the interior region, in addition to at the boundaries, of the 
flow field. Therefore additional effort may be needed when the flow field has a very 
strong variation. 
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APPENDIX: SCHEMES OF EXTRAPOLATION 

Two kinds of general schemes of extrapolation are discussed in the following 
using the simple advection equation in the one-dimensional case and the advection 
equation in the two-dimensional case. The schemes are intended to be applicable to 
more general wave equations. In order that they do not admit any computational 
mode, they must be order-consistent to the original differential equations. There- 
fore, one-sided difference schemes are used. 

1. The Upwind Schemes 

Let us consider the simple advection equation 

#t + cu, = 0, 

where c is assumed constant and positive. This equation is approximated by the 
following finite difference equation. 

FTBS (forward in time and backward in space) 

$+I = Uj” - c(Llt/Llx)(u,” - U;L_l), 

= (1 - I) ujn + r& , 

where r = c(dt/dx), being the Courant number, and the Courant condition, 
] r ] < 1, is assumed satisfied. 

An extrapolation scheme is “stable” [2], or rather, “nonamplifying,” if the value 
extrapolated is bounded by those of the neighboring points. It will be shown below 
that the above scheme possesses such a property. 

From the finite difference equation, it follows that 

so that 

I u;+l I S I 1 - r / * I uin 1 + I r I * I & I 

= (1 - r) ( ujn I + r ( 1.4j”-~ I 

< (1 - r> y$X I Ujn I + r 1$X I Ujn I 

= yy I v I, 

(zqf’( <InL$XIUj”l. 

One sees that 1 uT+r ( is bounded by values at the previous time step, and therefore 
the computation is nonamplifying. In order to apply this relation at the boundary 
on the right, i.e., j = J, one inserts J into j in the above difference equation. 

Similarly, for c < 0, the scheme of “forward in time and forward in space” is 

5W3/4-6 



534 CHEN 

used to obtain the value at j = 1, which was used by Platzman [2]. Nitta [3] also 
used this kind of extrapolation, but he used a forward time step of 2At. The 
stability condition, u(At/Ax) < l/2, is more restrictive than the Courant condition 
for the (interior) difference equation. It is to be noted that an extrapolation based 
on a nonamplifying scheme may not be strictly necessary or sufficient for the 
stability of a numerical problem because its interaction with the interior difference 
equation may also cause or suppress instability. However, a nonamplifying extra- 
polation seems to have less chance of causing instability. 

In the case of a-dimensional advection equation, i.e., 

ut + cu, + au, = 0, 

where a is the mean velocity component in y, the following finite difference scheme 
can be used: 

FTBXBY (forward in time, backward in X and backward in Y) 
for c > 0, a > 0, 

FTBXFY for c > 0, a < 0, 
F’TFXBY for c < 0, a > 0, 
FTFXFY for c < 0, a < 0. 

Another kind of scheme that immediately comes into one’s mind is a reversal of 
the roles of t and X, i.e., BTFS for c > 0 and FTFS for c < 0. Unfortunately, this 
is stable only if the Courant number is greater than 1. 

2. The Backward-Time Schemes 

We shall use again the simple advection equation mentioned earlier, where c is 
assumed constant and positive. The finite difference scheme for the one-dimensional 
case is: 

BTBS z&‘+’ - uin + c 2 (ui”” - fly?;) = 0 

or 

,;+1 = (uj” + ruZV(1 + r), 

where r = c(At/Ax), and no assumption about the Courant condition is needed 
here. Even though backward-time difference is used, the scheme is explicit for the 
determination of the boundary value. In this case, we have 
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So that uytl is bounded by its neighboring values. To extrapolate to j = J, j = J is 
inserted in the diEerence scheme. Similarly, for c < 0, BTFS can be used to obtain 
boundary value at j = 1. 

For the 2-dimensional advection equation, one of the following schemes is used: 

BTBXBY for c > 0, a > 0, 
BTBXFY for c > 0, a < 0, 

BTFXBY for c < 0, a > 0, 

BTFXFY for c < 0, a < 0. 

In the upwind scheme the way of difference in y depends on the sign of a; whereas in 
the backward-time scheme, it depends on the sign of (u/c). The upwind scheme 
requires the Courant condition. Therefore, it can be used only when explicit 
schemes are used for interior points. In contrast, the backward-time schme does 
not require the Courant condition, and thus can be used when either an explicit or 
an implicit scheme is used for interior points. 
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